Introduzione
Come già visto nei nostri precedenti appuntamenti, l’intelligenza artificiale ha le potenzialità per apportare molteplicivantaggi dal punto di vista organizzativo.
Analizziamo questa volta se l’intelligenza artificiale può essere considerata o meno una fonte del vantaggio competitivo aziendale. Quest’ultimo può essere definito come la capacità di un’azienda di “realizzare, in modocontinuativo, e dunque sostenibile nel tempo, una redditività più elevata dei concorrenti[1]”. Quindi, consiste nella maggiore redditività di un’organizzazione rispetto alle altre, la quale può essere ricondotta a particolari strategie, risorse o modalità di gestione.
Di conseguenza, occorre verificare se, a livello complessivo, l’impiego dell’intelligenza artificiale genera miglioramentinelle performance organizzative. In prima battuta, occorre sottolineare che l’introduzione di questa tecnologia all’interno delle organizzazioni genera tre effetti principali[2]:
- Effetto automazione: provoca un drastico calo dell’intervento umano nelle varie fasi del processo produttivo. In questo modo, se l’implementazione avviene correttamente, vi è la possibilità di incrementare l’efficienza e l’affidabilità delle operazioni;
- Effetto informativo: si riferisce alla capacità delle macchine intelligenti di raccogliere, archiviare, elaborare e distribuire informazioni all’interno delle organizzazioni con grande tempestività. Ciò permette di prenderedecisioni migliori e di monitorare costantemente l’andamento delle prestazioni;
- Effetto trasformazionale: indica l’abilità dell’intelligenza artificiale di facilitare l’innovazione e la trasformazione dei processi aziendali. Questo è un fattore cruciale per migliorare la relazione con la clientela e per sviluppare prodotti e servizi
Si può dunque affermare che l’intelligenza artificiale produce un impatto significativo a livello organizzativo. Come sottolineato nel precedente capitolo, essa viene utilizzata in molte aree organizzative, perché le sue potenzialità, se connesse opportunamente alle abilità umane, sono capaci di rafforzare la competitività delle organizzazioni. In questo senso, si analizzano alcune statistiche che mostrano l’impatto di questa tecnologia sui ricavi e sui costiorganizzativi.
Impatto dell’intelligenza artificiale sui ricavi
Relativamente ai primi, si riporta un grafico che evidenzia l’incremento a cui questi sono andati incontro nelle principali aree aziendali in cui viene impiegata l’intelligenza artificiale nel 2020 a livello mondiale:

Figura 1 – Crescita dei ricavi per area aziendale in seguito all’adozione dell’intelligenza artificiale da parte delle organizzazioni a livello mondiale nel 2020 Fonte: https://www.statista.com/statistics/1083482/worldwide-ai-revenue-increase/ ].
I dati a disposizione evidenziano una significativa crescita delle entrate per ciascuna area aziendale in cuil’intelligenza artificiale trova applicazione. A livello generale, si può dire che nella maggior parte dei casi, ossia il 33% prendendo come riferimento il valore medio, l’incremento è inferiore al 5%, mentre, sempre considerando la media, soltanto nel 13% del totale l’aumento è superiore al 10%.
Nello specifico, si può affermare che il reparto organizzativo in cui tale tecnologia apporta i maggiori benefici a livellodi entrate sia quello deputato al marketing e alle vendite, mentre quello su cui vi sono i minori effetti è la gestione della catena di fornitura. Nonostante ciò, anche quest’ultima area aziendale ottiene miglioramenti notevoli, visto che nel 12% dei casi si ha un incremento dei ricavi superiore al 10%.
Impatto dell’intelligenza artificiale sui costi
Per quanto riguarda i costi, si riporta un grafico che evidenzia la diminuzione che questi hanno subito nei medesimi reparti organizzativi in cui è stata implementata l’intelligenza artificiale a livello mondiale nello stesso arco temporale:

Figura 2 – Riduzione dei costi per area aziendale in seguito all’adozione dell’intelligenza artificiale da parte delle organizzazioni a livello mondiale nel 2020 [Fonte: https://www.statista.com/statistics/1083516/worldwide-ai-cost-decrease/ ].
Dalle statistiche a disposizione si nota una significativa riduzione dei costi per ciascuna area aziendale in cui l’intelligenza artificiale viene impiegata. A livello complessivo, si evince come nella maggior parte dei casi, ovvero il 33% considerando il valore medio, il decremento è superiore al 20%, mentre, sempre prendendo come riferimento la media, soltanto nel 18% del totale si riscontra una diminuzione inferiore al 10%. Di conseguenza, si può affermare che l’impatto dell’intelligenza artificiale sulla riduzione costi è superiore rispetto a quello esercitato sulla crescita ricavi, dato che la diminuzione percentuale delle spese è più elevata rispetto all’aumento percentuale delle entrate. Scendendo nel dettaglio, le aree organizzative che beneficiano maggiormente di questo vantaggio sono quelle relative alla produzione e al service operations, mentre quella in cui si hanno i minori effetti è l’area deputata alla strategia e alla finanza. Nonostante ciò, anche questo reparto ottiene benefici significativi, visto che nel 30% dei casivi è una riduzione maggiore del 20% in termini di costi.
L’intelligenza artificiale come vantaggio competitivo
Sulla base dei dati sopra esposti, è possibile affermare che l’intelligenza artificiale costituisce una fonte per ilvantaggio competitivo, visto che provoca, a livello complessivo, un incremento dei ricavi e una riduzione dei costi. Di conseguenza, essa, se implementata correttamente, ha il potenziale per produrre una redditività superiore rispetto aquella dei competitor.
In particolare, è possibile individuare tre modalità principali tramite cui le macchine intelligenti possono potenziare ilvantaggio competitivo[3]:
- Maggiore accuratezza nelle previsioni: queste vengono migliorate grazie alla già citata capacità di analizzare grandi quantità di dati per estrapolare informazioni utili a livello di business. In questo modo le organizzazioni sono preparate per affrontare tempestivamente gli eventi dirompenti. In tal senso, l’intelligenzaartificiale è in grado di riconoscere i bot, di anticipare le strategie degli hacker e di proteggersi da malware e ransomware. Un altro esempio proviene dal settore bancario, il quale sfrutta il machine learning per prevedere il rendimento degli investimenti, oppure per capire se i prestiti concessi verranno restituiti o meno;
- Incremento dell’efficienza: ciò è reso possibile dall’abilità delle macchine intelligenti di svolgere determinate attività più rapidamente rispetto agli esseri umani e, talvolta, anche con minori probabilità di errore;
- Ottimizzazione delle scelte in tempo reale: gli algoritmi consentono di effettuare operazioni o di cambiare strategia in tempo reale. Il machine learning, per esempio, può ritardare il lancio di prodotti che potrebberocannibalizzare i profitti provenienti da altre linee di prodotto. In questo senso, un’altra soluzione vantaggiosa è rappresentata dal pricing dinamico descritto nel precedente capitolo, che, secondo alcuni studi[4], può generare un incremento del livello dei profitti fino al 50%. Pertanto, si può dire che questa modalità ha un effetto immediato sui risultati di esercizio delle
Alcuni casi concreti
A supporto di questa teoria, si riportano alcuni esempi concreti, che dimostrano come le macchine intelligenti siano in grado di risolvere alcune rilevanti problematiche organizzative, generando così vantaggio competitivo.
Il primo caso riguarda la Abu Dhabi national oil company, un importante gruppo di imprese operanti nel settore dell’energia e in quello petrolifero. Tale organizzazione ha scelto di adottare l’intelligenza artificiale, sfruttando la tecnologia messa a punto da IBM relativamente al computer vision, per automatizzare alcune operazioni cruciali, quali l’analisi e la classificazione dei campioni di roccia[5]. Ciò le ha permesso di velocizzare in modo significativo ilprocesso di sviluppo dei modelli digitali di serbatoi per idrocarburi. Tramite questa tecnica, è possibile simulare il loro comportamento futuro e progettarli con le caratteristiche di capienza e permeabilità desiderate. Inoltre, gli ingegneri possono verificare rapidamente quale può essere l’impatto provocato da alcuni fattori fondamentali nella creazione dei serbatoi, quale il numero dei pozzi, la loro ampiezza e la loro tipologia. Come vale per tutti i sistemi di intelligenza artificiale, anche in questo caso l’abilità predittiva e l’accuratezza delle macchine intelligenti utilizzate è cresciuta con l’aumentare del numero dei dati a disposizione. Grazie a questa innovazione, oggi l’azienda è in grado di analizzare 527 immagini al secondo, mentre il tempo necessario per l’analisi di tutti i campioni raccolti intorno a un serbatoio ècalato da qualche mese ad alcuni minuti. Questi dati evidenziano dunque i miglioramenti ottenuti in termini di performance complessiva da parte del gruppo.
Un’altra esemplificazione deriva da United Health Care Services, una rete di ospedali attiva nello Stato di New York. Questa organizzazione utilizza il riconoscimento vocale per comprendere le problematiche dei pazienti e il natural language processing per suggerire in tempo reale ai medici la cura o l’intervento da effettuare. Questa tecnica èparticolarmente vantaggiosa, poiché dispone di una banca dati relativa alla storia clinica di tutti i pazienti dell’organizzazione. Di conseguenza, è in grado di indicare ai medici tempestivamente quello che deve essere fatto in base alla diagnosi effettuata. Tale sistema ha permesso all’organizzazione di migliorare la capacità di identificare i casi critici di malattia del 36%, mentre quelli a rischio di mortalità del 24%. In più, vi è stata una riduzione del 69% dei costi di trascrizione, con un risparmio complessivo che si aggira intorno ai 3 milioni di dollari[6].
Conclusioni
I casi e le statistiche riportate evidenziano che l’intelligenza artificiale è in grado di migliorare le performanceorganizzative. Pertanto, può essere considerata come una fonte del vantaggio competitivo aziendale. Tuttavia, occorre sottolineare ancora una volta come ciò può accadere soltanto se questa tecnologia viene introdotta correttamente e se vengono fronteggiati adeguatamente tutti i pericoli connessi alla sua adozione.
Bibliografia
- Agrawal, A., Gans, J., & Goldfarb, A. (2017). The trade-off every AI company will face.
- Harvard Business Review Digital Articles.
- Aspan, M. (2020). Siri, Did I Ace the Interview? Fortune International (Europe), 181(2).
- Bhimani, A., & Willcocks, L. (2014). Digitisation, Big Data and the transformation of accounting information. Accounting and Business Research, Taylor & Francis, Vol. 44 No. 4.
- Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfinkel, B., … & Amodei, D. (2018). The malicious use of artificial intelligence: Forecasting, prevention, and mitigation. arXiv preprint arXiv:1802.07228.
- CGMA (2016). Business Analytics And Decision Making. Baseline.
- Costa, G., & Gianecchini, M. (2019). Risorse umane: persone, relazioni e valore (Vol. 454). McGraw-Hill.
- Craigen, D., Diakun-Thibault, N., & Purse, R. (2014). Defining cybersecurity. Technology Innovation Management Review, 4(10).
- Daft, R. L. (2017). Organizzazione aziendale. Sesta edizione. Daft, R. L. (2021). Organizzazione aziendale. Maggioli, Milano.
- Davenport, T., Guha, A., & Grewal, D. (2021). How to Design an AI Marketing Strategy: What the Technology Can Do Today—and What’s Next. Harvard Business Review, 99, 42- 47.
- Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48(1), 24- 42.
- Doke, D. (2021). Software AI. Recruiter.
- Forger, G. (2020). AI and IoT are ready for your warehouse. Logistics management (Highlands Ranch, Colo.: 2002).
- Fountaine, T., McCarthy, B., & Saleh, T. (2021). Getting AI to scale. Harvard Business Review.
- Galeotti, M., & Garzella, S. (Eds.). (2013). Governo strategico dell’azienda: Prefazione del Prof. Umberto Bertini. G Giappichelli Editore.
- Gambhir, B., & Bhattacharjee, A. (2021). Embracing the role of artificial intelligence in accounting and finance: contemplating the changing skillset expectations. Development and Learning in Organizations: An International Journal.
- Gregg, M. (2005). CISSP security-management practices. Upper Saddle River, NJ: Pearson Education.
- Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California management review, 61(4), 5-14.
- Harrison, N., & O’Neill, D. (2017). If your company isn’t good at analytics, it’s not ready for AI. Harvard Business Review.
- Henke, N., Levine, J., & McInerney, P. (2018). You don’t have to be a data scientist to fill this must-have analytics role. Harvard Business Review.
- Huang, M. H., Rust, R., & Maksimovic, V. (2019). The feeling economy: Managing in the next generation of artificial intelligence (AI). California Management Review, 61(4), 43-65.
- Lichtenthaler, U. (2020). Mixing data analytics with intuition: Liverpool Football Club scores with integrated intelligence. Journal of Business Strategy.
- Luo, X., Qin, M. S., Fang, Z., & Qu, Z. (2021). Artificial intelligence coaches for sales agents: Caveats and solutions. Journal of Marketing, 85(2), 14-32.
- McAfee, A., & Brynjolfsson, E. (2012). Big data: the management revolution. Harvard business review, 90(10), 60-68.
- Miyashita, M., & Brady, M. (2019). The Health Care Benefits of Combining Wearables and AI. Harvard Business Review.
- Nair, K., & Gupta, R. (2021). Application of AI technology in modern digital marketing environment. World Journal of Entrepreneurship, Management and Sustainable Development.
- Niehueser, W., & Boak, G. (2020). Introducing artificial intelligence into a human resources function. Industrial and commercial training, 52(2), 121-130.
- Ore, O., & Sposato, M. (2021). Opportunities and risks of artificial intelligence in recruitment and selection. International Journal of Organizational Analysis.
- Paschen, J., Kietzmann, J., & Kietzmann, T. C. (2019). Artificial intelligence (AI) and its implications for market knowledge in B2B marketing. Journal of Business & Industrial Marketing.
- Paschen, U., Pitt, C., & Kietzmann, J. (2020). Artificial intelligence: Building blocks and an innovation typology. Business Horizons, 63(2), 147-155.
- Petkov, R. (2020). Artificial intelligence (AI) and the accounting function—A revisit and a new perspective for developing framework. Journal of emerging technologies in accounting, 17(1), 99-105.
- Pighin, M., & Marzona, A. (2018). Sistemi informativi aziendali: ERP e sistemi di data analysis.
- Poba-Nzaou, P., Galani, M., Uwizeyemungu, S., & Ceric, A. (2021). The impacts of artificial intelligence (AI) on jobs: an industry perspective. Strategic HR Review, 20(2), 60- 65.
- Ponnapalli, P. (2022). Keys to successful innovation through artificial intelligence. Harvard Business Review.
- Ransbotham, S., Candelon, F., Kiron, D., LaFountain, B., & Khodabandeh, S. (2021). The Cultural Benefits of Artificial Intelligence in the Enterprise. MIT Sloan Management Review and Boston Consulting Group.
- Rudko, I., Bashirpour Bonab, A., & Bellini, F. (2021). Organizational structure and artificial intelligence. Modeling the intraorganizational response to the ai contingency. Journal of Theoretical and Applied Electronic Commerce Research, 16(6), 2341-2364.
- Samonas, S., & Coss, D. (2014). The CIA strikes back: Redefining confidentiality, integrity and availability in security. Journal of Information System Security, 10(3).
- Shrestha, Y. R., Ben-Menahem, S. M., & Von Krogh, G. (2019). Organizational decision- making structures in the age of artificial intelligence. California Management
- Review, 61(4), 66-83.
- Simonovich, L. (2021). Balancing AI advances with robust cybersecurity solutions. World Oil.
- Soni, V. D. (2020). Challenges and Solution for Artificial Intelligence in Cybersecurity of the USA. Available at SSRN 3624487.
- Strubell, E., Ganesh, A., & McCallum, A. (2019). Energy and policy considerations for deep learning in NLP. arXiv preprint arXiv:1906.02243.
- Tabesh, P. (2021). Who’s making the decisions? How managers can harness artificial intelligence and remain in charge. Journal of Business Strategy.
- S (2021). 3 areas where AI will boost your competitive advantage. Harvard Business Review Digital Articles.
- Truong, T. C., Zelinka, I., Plucar, J., Čandík, M., & Šulc, V. (2020). Artificial intelligence and cybersecurity: Past, presence, and future. In Artificial intelligence and evolutionary computations in engineering systems (pp. 351-363). Springer, Singapore.
- Tschang, F. T., & Almirall, E. (2021). Artificial intelligence as augmenting automation: Implications for employment. Academy of Management Perspectives, 35(4), 642-659.
- Tse, T., Esposito, M., Takaaki, M., & Goh, D. (2020). The dumb reason your AI project will fail. Harvard business review digital articles, 2-5.
- Vadari, S., & Desik, P. A. (2021). The Role of AI/ML in Enhancing Knowledge Management Systems. IUP Journal of Knowledge Management, 19(2), 7-31.
- Wamba-Taguimdje, S. L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020). Influence of artificial intelligence (AI) on firm performance: the business value of AI-based transformation projects. Business Process Management Journal, 26(7), 1893-1924.
- Whitmore, A., Agarwal, A., & Da Xu, L. (2015). The Internet of Things—A survey of topics and trends. Information systems frontiers, 17(2), 261-274.
- Yampolskiy, R. V. (2017). AI Is the Future of Cybersecurity, for Better and for Worse. Harvard Business Review. May, 8.
- Zaki, M., McColl-Kennedy, R., & Neely, A. (2021). Using AI to Track How Customers Feel—In Real Time. Harvard Business Review.
- Zhang, H., Zhang, X., & Song, M. (2021). Deploying AI for New Product Development Success: By embracing and incorporating AI in all stages of NPD, companies can increase their success rate of NPD projects. Research-Technology Management, 64(5), 50-57.
- Zouave, E., Gustafsson, T., Bruce, M., Colde, K., Jaitner, M., & Rodhe, I. (2020). Artificially intelligent cyberattacks. Swedish Defence Research Agency, FOI, Tech. Rep. FOI.
- (2017). Lavazza a caccia di “coffe addicted” con l’intelligenza artificiale. Il Sole 24 Ore. Retrieved fromhttps://www.ilsole24ore.com/art/lavazza-caccia-coffee-addicted-l- intelligenza-artificiale–AEBRpxQD 2022/08/02
- Amar, J., Majumder, S., Surak, Z., & von Bismarck, N. (2021). How AI-driven nudges can transform an operation’s performance. McKinsey Global Institute. Retrieved from https://www.mckinsey.com/business-functions/operations/our-insights/how-ai-driven- nudges-can-transform-an-operations-performance 2022/07/27
- Balabio, B., Orlando, P., & Scolari, T. (2021). Cresce il mercato dell’intelligenza artificiale in Italia. Retrieved from https://www.osservatori.net/it/ricerche/comunicati- stampa/artificial-intelligence-italia-mercato-progetti-20202022/07/08
- Berruti, F., Nel, P., & Whiteman R. (2020). An executive primer on artificial general intelligence. McKinsey Global Institute. Retrieved from https://www.mckinsey.com/business-functions/operations/our-insights/an-executive- primer-on-artificial-general-intelligence 2022/07/06
- Boehm, J., Curcio, N., Merrath, P., Shenton, L., & Stahle T. (2019). The risk-based approach to cybersecurity. McKinsey Global Institute. Retrieved from https://www.mckinsey.com/business-functions/risk-and-resilience/our-insights/the-risk- based-approach-to-cybersecurity 2022/08/03
- Brooks, C. (2022). Alarming cyber statistics for mid-year 2022 that you need to know. Forbes. Retrieved from https://www.forbes.com/sites/chuckbrooks/2022/06/03/alarming- cyber-statistics-for-mid-year-2022-that-you-need-to-know/?sh=7043d0247864 2022/08/03
- Brown, S., Gandhi, D., Herring, L., & Puri, A. (2019). The analytics academy: bridging the gap between human and artificial intelligence. McKinsey Global Institute. Retrieved from https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/the- analytics-academy-bridging-the-gap-between-human-and-artificial-intelligence 2022/07/18
- Buehler, K., Dooley, R., Grennan, L., & Singla, A. (2021). Getting to know-and manage- your biggest AI risks. McKinsey Global Institute. Retrieved from https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/getting-to- know-and-manage-your-biggest-ai-risks 2022/07/11
- Bughin, J., Seong, J., Manyika, J., Chui, M., & Joshi, R. (2018). Notes from the AI frontier: Modeling the impact of AI on the world economy. McKinsey Global Institute. Retrieved from https://www.mckinsey.com/featured-insights/artificial-intelligence/notes-from-the-ai- frontier-modeling-the-impact-of-ai-on-the-world-economy#part12022/07/15
- Chakraborty, A. (2021). A.I. can be a cornerstone of success – but only if leaders make the right choices. Fortune. Retrieved from https://fortune.com/2021/10/27/ai-artificial- intelligence-business-strategy-data-accenture/2022/07/29
- Chui, M., Hall, B., Singla, A., & Sukharevsky, A. (2021). The state of AI in 2021. McKinsey Global Institute. Retrieved from https://www.mckinsey.com/business- functions/quantumblack/our-insights/global-survey-the-state-of-ai-in-20212022/07/08
- Chui, M., Manyika, J., Miremadi, M., Henke, N., Chung, R., Nel, P., & Malhotra, S. (2018). Notes from the AI frontier: Applications and value of deep learning. McKinsey global institute discussion paper, April. Retrieved from https://www.mckinsey.com/featured- insights/artificial-intelligence/notes-from-the-ai-frontier-applications-and-value-of-deep- learning 2022/07/07
- Dandona, G. S., Sharma, J., & Wright, M. (2021). Our own digital journey: upskilling hundreds of McKinsey technologists in AI. McKinsey Global Institute. Retrieved from https://www.mckinsey.com/about-us/new-at-mckinsey-blog/ai-upskilling-for-over-500- firm-technologists 2022/07/19
- Fowler, G. (2020). AI and its potential for cybersecurity. Forbes. Retrieved from https://www.forbes.com/sites/forbesbusinessdevelopmentcouncil/2020/12/18/ai-and-its- potential-for-cybersecurity/?sh=5d2f609e69d9 2022/08/03
- https://assets.siemens-energy.com/siemens/assets/api/uuid:cf20f2e1-ca9c-4589-9f88- 4e6592b4672d/brochure-deeparmour-industrial-200609.pdf 2022/08/05
- https://bids.berkeley.edu/news/berkeley-institute-data-science-and-accenture-applied- intelligence-announce-new-collaboration 2022/07/18
- https://info.algorithmia.com/hubfs/2020/Reports/2021-Trends-in- ML/Algorithmia_2021_enterprise_ML_trends.pdf?hsLang=en-us 2022/07/08
- https://wwd.com/business-news/technology/levis-ai-bootcamp-data-science-1234881378/ 22/09/04
- https://www.accenture.com/_acnmedia/PDF-63/Accenture-CoBE-Brochure-
- pdf#zoom=50 2022/08/23
- https://www.accenture.com/fr-fr/_acnmedia/36dc7f76eab444cab6a7f44017cc3997.pdf 2022/07/08
- https://www.bcg.com/publications/2020/is-your-company-embracing-full-potential-of- artificial-intelligence 2022/09/17
- https://www.capgemini.com/wp-content/uploads/2019/07/AI-in- pdf 2022/08/03
- https://www.careers.ox.ac.uk/article/the-pymetrics-games-overview-and-practice- guidelines 2022/07/26
- https://www.cnr.it/sites/default/files/public/media/attivita/editoria/VOLUME%20FULL%20 14%20digital%20LIGHT.pdf 2022/08/22
- https://www.levistrauss.com/2021/05/17/machine-learning-bootcamp/ 2022/07/19
- https://www.linkedin.com/pulse/how-coca-cola-using-ai-stay-top-soft-drinks-market- shivani-salunkhe 2022/08/23
- https://www.mckinsey.com/about-us/new-at-mckinsey-blog/mckinsey-receives-top- ranking-in-the-forrester-wave-ai-report 2022/07/19
- https://www.nist.gov/system/files/documents/cyberframework/cybersecurity-framework- pdf 2022/08/03
- https://www.statista.com/statistics/1083482/worldwide-ai-revenue-increase/ 2022/08/02 https://www.statista.com/statistics/1083516/worldwide-ai-cost-decrease/ 2022/08/02
- https://www.statista.com/statistics/1119824/global-business-and-hr-leaders-on-ai-impact- to-job-numbers/ 2022/07/20
- https://www.statista.com/statistics/1235395/worldwide-ai-enabled-cyberattacks- companies/ 2022/08/05
- https://www.statista.com/statistics/1293758/ai-marketing-revenue-worldwide/ 2022/07/25
- https://www.statista.com/statistics/472934/business-analytics-software-revenue- worldwide/ 2022/07/29
- https://www.statista.com/statistics/871513/worldwide-data-created/ 2022/07/29
- https://www.statista.com/statistics/941137/ai-investment-and-funding-worldwide/ 2022/07/08
- https://www.treccani.it/enciclopedia/intelligenza-artificiale 2022/07/04
- https://www.treccani.it/enciclopedia/sicurezza-informatica/#:~:text=sicur%C3%A9zza%20inform%C3%A0tica%20Ramo%20dell’informatica,dati%20riservati%20in%20essi%20contenuti. 2022/09/13
- https://www.tripwire.com/state-of-security/security-data-protection/43-billion-stolen- through-business-email-compromise-since-2016-reports-fbi/ 2022/09/13
- https://www.webfx.com/martech/pricing/ai/#:~:text=In%202020%2C%20companies%20can%20pay,house%20or%20freelance%20data%20scientists.&text=In%20comparison
- %2C%20custom%20AI%20solutions,from%20%246000%20to%20over%20%24300%2C 000. 2022/09/18
- Jeans, D. (2020). Companies will spend $50 billion on artificial intelligence this year with little to show for it. Forbes. Retrieved from https://www.forbes.com/sites/davidjeans/2020/10/20/bcg-mit-report-shows-companies- will-spend-50-billion-on-artificial-intelligence-with-few-results/?sh=7efe3fe57c87 2022/09/17
- Johar, P. (2020). How AI makes big data smarter. Forbes. Retrieved from https://www.forbes.com/sites/forbestechcouncil/2020/03/23/how-ai-makes-big-data- smarter/?sh=381f9b6a4684 2022/08/01
- Luchtenberg, D., & Migliorini, R. (2022). Coca-Cola: The people-first story of a digital transformation. McKinsey Global Institute. Retrieved from https://www.mckinsey.com/business-functions/operations/our-insights/coca-cola-the-people-first-story-of-a-digital-transformation 2022/08/02
- Malins, A. (2022). Machine learning and artificial intelligence: implementation in practice. Forbes. Retrieved from https://www.forbes.com/sites/forbestechcouncil/2022/01/25/machine-learning-and- artificial-intelligence-implementation-in-practice/?sh=7692b2a35c89 2022/07/15
- Manyika J., & Sneader K. (2018). AI, automation, and the future of work: Ten things to solve for. McKinsey Global Institute. Retrieved from https://www.mckinsey.com/featured- insights/future-of-work/ai-automation-and-the-future-of-work-ten-things-to-solve-for 2022/07/15
- Marr, B. (2017). The Amazing Ways Coca Cola Uses Artificial Intelligence And Big Data To Drive Success. Forbes. Retrieved from https://www.forbes.com/sites/bernardmarr/2017/09/18/the-amazing-ways-coca-cola- uses-artificial-intelligence-ai-and-big-data-to-drive-success/?sh=1448c01778d2 2022/08/02
- Marr, B. (2018). The amazing ways how Unilever uses artificial intelligence to recruit & train thousands of employees. Forbes. Retrieved from https://www.forbes.com/sites/bernardmarr/2018/12/14/the-amazing-ways-how-unilever-uses-artificial-intelligence-to-recruit-train-thousands-of-employees/?sh=485a1ca76274 2022/07/26
- Marr, B. (2022). The most in – demand technical skills – and how to develop them. Forbes. Retrieved from https://www.forbes.com/sites/bernardmarr/2022/08/03/the-most- in-demand-technical-skills–and-how-to-develop-them/?sh=7a1c4e1362e4 2022/08/22
- Mohan S. (2022). How to make it easier to implement AI in your business. Forbes. Retrieved from https://www.forbes.com/sites/forbestechcouncil/2022/05/27/how-to- make-it-easier-to-implement-ai-in-your-business/?sh=481bfbd65300 2022/07/12
- Rossitto, S. (2021). “Senza intelligenza artificiale e big data impossibile un vaccino contro il Covid in tempi brevi”. Il Sole 24 Ore. Retrieved from https://www.ilsole24ore.com/art/senza-intelligenza-artificiale-e-big-data-impossibile-vaccino-contro-covid-tempi-brevi-AD5lOYHB 2022/08/01
- Rusconi, G. (2022). L’intelligenza artificiale facilita il cambiamento organizzativo. Il Sole 24 Ore. Retrieved from https://www.ilsole24ore.com/art/l-intelligenza-artificiale-facilita- cambiamento-organizzativo-AEitC2OB 2022/07/14
- Sinur, J., & Peters, E. (2019). AI & big data; better together. Forbes. Retrieved from https://www.forbes.com/sites/cognitiveworld/2019/09/30/ai-big-data-better- together/?sh=61a9e9a360b3 2022/08/01
- Taulli, T. (2021). Artificial intelligence: should you teach it to your employees? Forbes. Retrieved from https://www.forbes.com/sites/tomtaulli/2021/09/10/ai-artificial- intelligence-should-you-teach-it-to-your-employees/?sh=2bab6b507b73 2022/07/18
- Tremolada, L. (2019). Machine learning, deep learning e reti neurali. Ecco di cosa parliamo. Il sole 24 ore. Retrieved from https://www.ilsole24ore.com/art/machine- learning-deep-learning-e-reti-neurali-ecco-cosa-parliamo–AEaToEBH2022/07/07
- ASIMOV, I. (1950), I, Robot. (Cited at page 5)
- BABBAGE, C. (1982), «On the Mathematical Powers of the Calculating Engine», The Origins of Digital Computers. Texts and Monographs in Computer Science.
- BODEN, M. A. (2018), Artificial Intelligence: A Very Short Introduction.
- CAMPBELL, M., HOANE, A. J. e HSIUNG HSU, F. (2002), «Deep Blue», Artificial Intelligence, vol. 134, p. 57–83.
- CLARKE, A. C. e KUBRICK, S. (1968), 2001: A Space Odyssey.
- DICK, P. K. (1968), Do Androids Dream of Electric Sheep?
- HASHEMIPOUR, S. e ALI, M. (2020), «Amazon Web Services (AWS) – An Overview of the On-Demand Cloud Computing Platform».
- KRIZHEVSKY, A., SUTSKEVER, I. e HINTON, G. E. (2012), «ImageNet classification with deep convolutional neural networks», Communications of the ACM, vol. 60, p. 84 – 90.
- LECUN, Y., BENGIO, Y. e HINTON, G. E. (2015), «Deep Learning», Nature, vol. 521, p. 436–444.
- MASLEJ, N., FATTORINI, L., BRYNJOLFSSON, E., ETCHEMENDY, J., LIGETT, K., LYONS, T., MANYIKA, J., NGO, H., NIEBLES, J. C., PARLI, V., SHOHAM, Y., WALD, R., CLARK, J., e PERRAULT, R. (2023), «The AI Index 2023 Annual Report», Rap. tecn., AI Index Steering Committee, Institute for Human-Centered AI, Stanford University, Stanford, CA.
- MCCARTHY, J. (1960), «Programs with common sense».
- MCCARTHY, J., MINSKY, M., ROCHESTER, N. e SHANNON, C. E. (2006), «A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955», AI Mag., vol. 27, p. 12–14.
- RAO, A. S. e VERWEIJ, G. (2017), «Sizing the prize: what’s the real value of AI for your business and how can you capitalise?».
- RUSSELL, B. e WHITEHEAD, A. N. (1956), «Principia Mathematica to *56».
- RUSSELL, S. e NORVIG, P. (1995), «Artificial intelligence – a modern approach: the intelligent agent book».
- TURING, A. (1937), «On computable numbers, with an application to the Entscheidungsproblem», Proc. London Math. Soc.
- VASWANI, A., SHAZEER, N. M., PARMAR, N., USZKOREIT, J., JONES, L., GOMEZ, A. N., KAISER, L. e POLOSUKHIN, I. (2017), «Attention is All you Need», in «NIPS».
Note
[1] Galeotti, M., & Garzella, S. (Eds.). (2013). Governo strategico dell’azienda: Prefazione del Prof. Umberto Bertini. G Giappichelli Editore, 72.
[2] Wamba-Taguimdje, S. L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020), op. cit., 1902-1903.
[3] Townson. S (2021). 3 areas where AI will boost your competitive advantage. Harvard Business Review Digital Articles, 3-4.
[4] Townson. S (2021), op. cit., 4.
[5] Wamba-Taguimdje, S. L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020), op. cit., 1906-1908.
[6] Wamba-Taguimdje, S. L., Wamba, S. F., Kamdjoug, J. R. K., & Wanko, C. E. T. (2020), op. cit., 1909.